
MATLAB® Production Server™
Python® Client Programming

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Production Server™ Python® Client Programming
© COPYRIGHT 2012–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2014 Online only New for Version 2.0 (Release R2014b)
March 2015 Online only Revised for Version 2.1 (Release R2015a)
September 2015 Online only Revised for Version 2.2 (Release R2015b)
March 2016 Online only Revised for Version 2.3 (Release 2016a)
September 2016 Online only Revised for Version 2.4 (Release 2016b)
March 2017 Online only Revised for Version 3.0 (Release 2017a)
September 2017 Online only Revised for Version 3.0.1 (Release R2017b)
March 2018 Online only Revised for Version 3.1 (Release R2018a)
September 2018 Online only Revised for Version 4.0 (Release R2018b)
March 2019 Online only Revised for Version 4.1 (Release R2019a)
September 2019 Online only Revised for Version 4.2 (Release R2019b)
March 2020 Online only Revised for Version 4.3 (Release R2020a)
September 2020 Online only Revised for Version 4.4 (Release R2020b)
March 2021 Online only Revised for Version 4.5 (Release R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Client Programming
1

Create a MATLAB Production Server Python Client 1-2

Create a Python Client . 1-3

Python Client Development
2

Install the MATLAB Production Server Python Client 2-2
Supported Python Interpreters . 2-2
Installation Procedure . 2-2

Create Client Connection . 2-3
Create a Default Connection . 2-3
Configure the Connection Time Out . 2-3

Invoke MATLAB Functions that Return Zero Outputs 2-4

Invoke MATLAB Functions that Return a Single Output 2-5

Invoke MATLAB Functions that Return Multiple Outputs 2-6
Receive the Results as Individual Variables . 2-6
Receive the Results as a Single Object . 2-6

Handle Function Processing Errors . 2-8
HTTP Errors . 2-8
MATLAB Runtime Errors . 2-9

Data Handling
3

Pass Data to MATLAB Production Server from Python 3-2

Handle Data Returned from MATLAB Production Server to Python 3-3

MATLAB Arrays as Python Variables . 3-4
Create MATLAB Arrays in Python . 3-4
MATLAB Array Attributes and Methods in Python 3-5

iii

Contents

Multidimensional MATLAB Arrays in Python . 3-6
Index Into MATLAB Arrays in Python . 3-6
Slice MATLAB Arrays in Python . 3-6
Reshaping MATLAB Arrays in Python . 3-7

Use MATLAB Arrays in Python . 3-9

APIs
4

iv Contents

Client Programming

• “Create a MATLAB Production Server Python Client” on page 1-2
• “Create a Python Client” on page 1-3

1

Create a MATLAB Production Server Python Client
To create a MATLAB Production Server client:

1 Install the client run-time files.

See “Install the MATLAB Production Server Python Client” on page 2-2
2 In consultation with the MATLAB programmer, collect the MATLAB function signatures that

comprise the services in the application.
3 Write the Python code to instantiate a connection to a MATLAB Production Server instance.

See “Create Client Connection” on page 2-3
4 Create the required MATLAB data for function inputs and outputs.

See “MATLAB Arrays as Python Variables” on page 3-4.
5 Evaluate the MATLAB functions.

See “Invoke MATLAB Functions that Return a Single Output” on page 2-5 or “Invoke MATLAB
Functions that Return Multiple Outputs” on page 2-6

6 Close the client connection.

1 Client Programming

1-2

Create a Python Client
This example shows how to write a MATLAB Production Server client using the Python client API. The
client application calls the addmatrix function you compiled in “Package Deployable Archives with
Production Server Compiler App” (MATLAB Compiler SDK) and deployed in “Share Deployable
Archive”.

Create a Python MATLAB Production Server client application:

1 Copy the contents of the MPS_INSTALL\clients\python folder to your development
environment.

2 Open a command line,
3 Change directories into the folder where you copied the MATLAB Production Server Python

client.
4 Run the following command.

python setup.py install
5 Start the Python command line interpreter.
6 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

7 Open the connection to the MATLAB Production Server instance and initialize the client runtime.

client_obj = client.MWHttpClient("http://localhost:9910")
8 Create the MATLAB data to input to the function.

a1 = matlab.double([[1,2,3],[3,2,1]])
a2 = matlab.double([[4,5,6],[6,5,4]])

9 Call the deployed MATLAB function.

You must know the following:

• Name of the deployed archive
• Name of the function

client_obj.addmatrix.addmatrix(a1,a2)

matlab.double([[5.0,7.0,9.0],[9.0,7.0,5.0]])

The syntax for invoking a function is client.archiveName.functionName(arg1,
arg2, .., [nargout=numOutArgs]).

10 Close the client connection.

client_obj.close()

 Create a Python Client

1-3

Python Client Development

• “Install the MATLAB Production Server Python Client” on page 2-2
• “Create Client Connection” on page 2-3
• “Invoke MATLAB Functions that Return Zero Outputs” on page 2-4
• “Invoke MATLAB Functions that Return a Single Output” on page 2-5
• “Invoke MATLAB Functions that Return Multiple Outputs” on page 2-6
• “Handle Function Processing Errors” on page 2-8

2

Install the MATLAB Production Server Python Client
In this section...
“Supported Python Interpreters” on page 2-2
“Installation Procedure” on page 2-2

Supported Python Interpreters
For information about versions of Python that the MATLAB Production Server Python client supports,
see Product Requirements & Platform Availability for MATLAB Production Server.

Installation Procedure
The MATLAB Production Server Python client provides a standard Python setup script. This script
installs the required modules into your Python environment.

1 Change into the Python client folder.

Example 2.1. UNIX

cd MPS_INSTALL/client/python

Example 2.2. Windows

cd MPS_INSTALL\client\python
2 Run the setup script.

python setup.py install

See Also

More About
• “Create a Python Client” on page 1-3
• “Create a MATLAB Production Server Python Client” on page 1-2

2 Python Client Development

2-2

https://www.mathworks.com/support/requirements/matlab-production-server.html

Create Client Connection

In this section...
“Create a Default Connection” on page 2-3
“Configure the Connection Time Out” on page 2-3

The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. You use the constructor to
instantiate the connection between the client and the server.

The MWHttpClient() constructor has the following signature:

client.MWHttpClient(url[,timeout_ms=timeout])

The constructor has the following arguments:

• url — URL of the server instance to which the client connects. The URL must contain the port
number of the server instance.

Note The URL contains only the host name and port information of the server instance.
• timeout_ms — Amount of time, in milliseconds, that the client waits for a response before timing

out.

The default time-out interval is two minutes.

Note The MWHttpClient object is not thread-safe. If you are developing a multithreaded
application, create a new MWHttpClient object for each thread.

Create a Default Connection
To create a default connection, provide a value for the server instance URL. The timeout_ms
argument has a default value, so you do not need to specify a time. This code sample shows how to
connect to server instance on a host named mps_host using the default time-out of two minutes.

import matlab
from production_server import client

my_client = client.MWHttpClient("http://mps_host:9910")

Configure the Connection Time Out
You specify the connection time out by providing a value for the timeout_ms argument. This code
sample specifies a time-out of one minute.

import matlab
from production_server import client

my_client = client.MWHttpClient("http://mps_host:9910",timeout_ms=60000)

 Create Client Connection

2-3

Invoke MATLAB Functions that Return Zero Outputs
The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. You invoke MATLAB functions
directly using the client connection object.

void = my_client.archive_name.function_name(in_args, nargout=0)

• my_client — Name of client connection object
• archive_name — Name of the deployable archive hosting the function
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments

For example, to invoke the MATLAB function mutate(m1, m2, m3) from the deployable archive
mutations, you use this code:

import matlab
from production_server import client

my_client = client.MWHttpClient("http:\\localhost:9910")

m1 = matlab.double(...)
m2 = matlab.double(...)
m3 = matlab.double(...)

my_client.mutations.mutate(m1,m2,m3)

See Also

Related Examples
• “Invoke MATLAB Functions that Return a Single Output” on page 2-5
• “Invoke MATLAB Functions that Return Multiple Outputs” on page 2-6

2 Python Client Development

2-4

Invoke MATLAB Functions that Return a Single Output
The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. You invoke MATLAB functions
directly using the client connection object.

result = my_client.archive_name.function_name(in_args)

• my_client — Name of client connection object
• archive_name — Name of the deployable archive hosting the function
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments

For example, to invoke the MATLAB function result = mutate(m1, m2, m3) from the deployable
archive mutations, you use this code:

import matlab
from production_server import client

my_client = client.MWHttpClient("http:\\localhost:9910")

m1 = matlab.double(...)
m2 = matlab.double(...)
m3 = matlab.double(...)

result = my_client.mutations.mutate(m1,m2,m3)

See Also

Related Examples
• “Invoke MATLAB Functions that Return Multiple Outputs” on page 2-6
• “Invoke MATLAB Functions that Return Zero Outputs” on page 2-4

 Invoke MATLAB Functions that Return a Single Output

2-5

Invoke MATLAB Functions that Return Multiple Outputs
In this section...
“Receive the Results as Individual Variables” on page 2-6
“Receive the Results as a Single Object” on page 2-6

Receive the Results as Individual Variables
The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. When you are expecting multiple
return values from the server and want each return value saved in a variable, invoke MATLAB
functions directly using the client connection object.

result1,...resultN = my_client.archive_name.function_name(in_args,
 nargout=nargs)

• my_client — Name of client connection object
• archive_name — Name of the deployable archive hosting the function
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments
• nargs — Number of results expected from the server

Each variable is populated with a single return value.

For example, to invoke the MATLAB function c1,c2= copy(o1,o2) from the deployable archive
copier, use this code:

>>> import matlab
>>> from production_server import client
>>> my_client = client.MWHttpClient("http://localhost:9910")
>>> c1,c2 = my_client.copier.copy("blue",10,nargout=2)
>>> print(c1)
"blue"
>>> print(c2)
10

Receive the Results as a Single Object
The connection between a Python client and a MATLAB Production Server instance is encapsulated in
a matlab.production_server.client.MWHttpClient object. You invoke MATLAB functions
directly using the client connection object.

results = my_client.archive_name.function_name(in_args, nargout=nargs)

• my_client — Name of client connection object
• archive_name — Name of the deployable archive hosting the function
• function_name — Name of the function to invoke
• in_args — Comma-separated list of input arguments
• nargs — Number of results expected from the server

2 Python Client Development

2-6

The variable is populated by a list containing all of the returned values.

For example, to invoke the MATLAB function c1,c2= copy(o1,o2) from the deployable archive
copier, use this code:

>>> import matlab
>>> from production_server import client
>>> my_client = client.MWHttpClient("http://localhost:9910")
>>> copies = my_client.copier.copy("blue",10,nargout=2)
>>> print(copies)
["blue",10]

See Also

Related Examples
• “Invoke MATLAB Functions that Return a Single Output” on page 2-5
• “Invoke MATLAB Functions that Return Zero Outputs” on page 2-4

 Invoke MATLAB Functions that Return Multiple Outputs

2-7

Handle Function Processing Errors
In this section...
“HTTP Errors” on page 2-8
“MATLAB Runtime Errors” on page 2-9

The common types of exceptions that can occur when evaluating MATLAB functions include:

• HTTP errors — Handled using the Python httplib.HTTPException exception. Common reasons
for HTTP errors include:

• Using an incorrect archive name
• Using an incorrect function name
• Timing out before the function finishes evaluating

• MATLAB Runtime errors — Handled using the matlab.mpsexception.MATLABException
exception. Occurs when the MATLAB Runtime generates an error while evaluating a function.

Your client code should handle these errors gracefully.

HTTP Errors
If your client code experiences any issues when sending data to or receiving data from a server
instance, an httplib.HTTPException exception is raised. A common cause for an HTTP error is a
name mismatch between deployed artifacts on the server and the functions called in the client.

For example, deploying the function mutate() in the archive mutations the following results in an
error because the server instance would not be able to resolve the name of the archive.

import httplib
import matlab
from production_server import client

def main()
 my_client = client.MWHttpClient("http://localhost:9190")

 try:
 result = my_client.mutation.mutate("blue",10,12)
 ...
 except httplib.HTTPException as e:
 print e

If you deploy the function mutate() in the archive mutations, the following results in an error
because the server instance would not be able to resolve the name of the function.

import httplib
import matlab
from production_server import client

def main()
 my_client = client.MWHttpClient("http://localhost:9190")

 try:
 result = my_client.mutations.mutator("blue",10,12)

2 Python Client Development

2-8

 ...
 except httplib.HTTPException as e:
 print e

MATLAB Runtime Errors
If an error occurs while the MATLAB Runtime is evaluating a function, a
matlab.mpsexception.MATLABException exception is raised. The exception contains the
following:

• ml_error_message — Error message returned by the MATLAB Runtime
• ml_error_identifier — MATLAB error ID
• ml_error_stack — MATLAB Runtime stack

This function catches any MATLAB Runtime errors and prints them to the console.

from matlab.production_server import client
from matlab.production_server import mpsexceptions
import sys

def main(size):

 my_client = client.MWHttpClient('http://localhost:9190')
 try:
 data = my_client.magic.mymagic(size)
 print data
 except mpsexceptions.MATLABException as e:
 print 'MATLAB Error: ',e

 my_client.close()

 Handle Function Processing Errors

2-9

Data Handling

• “Pass Data to MATLAB Production Server from Python” on page 3-2
• “Handle Data Returned from MATLAB Production Server to Python” on page 3-3
• “MATLAB Arrays as Python Variables” on page 3-4
• “Use MATLAB Arrays in Python” on page 3-9

3

Pass Data to MATLAB Production Server from Python
When you pass data as input arguments to MATLAB functions from Python, MATLAB Production
Server converts the data into equivalent MATLAB data types.

Python Input Argument Type Resulting MATLAB Data Type
(scalar unless otherwise noted)

matlab numeric array object (see “MATLAB
Arrays as Python Variables” on page 3-4)

Numeric array

float double
complex Complex double
int int32(Windows®)

int64(Linux® and Mac)
long a int64
float('nan') NaN
float('inf') Inf
bool logical
str char
bytearray uint8 array
bytes uint8 array
dict Structure if all keys are strings

Not supported otherwise
list Cell array
set Cell array
tuple Cell array
memoryview Not supported
range Cell array
None Not supported
module.type Not supported
a. long is a data type of Python 2.7 only

3 Data Handling

3-2

Handle Data Returned from MATLAB Production Server to
Python

When MATLAB functions return output arguments, MATLAB Production Server converts the data into
equivalent Python data types.

MATLAB Output Argument Type
(scalar unless otherwise noted)

Resulting Python Data Type

Numeric array matlab numeric array object (see “MATLAB
Arrays as Python Variables” on page 3-4)

double
single

float

Complex (any numeric type) complex
int8
uint8
int16
uint16
int32

int

uint32
int64
uint64

int
long

NaN float('nan')
Inf float('inf')
logical bool
char array (1-by-N, N-by-1)
char array (M-by-N)

str
Not supported

structure dict
Row or column cell array list
M-by-N cell array Not supported
MATLAB handle object (table,
containers.Map, categorical array)

Not supported

Other object (e.g., Java®) Not supported
Function handle Not supported
Sparse array Not supported
String array Not supported
Structure array Not supported

 Handle Data Returned from MATLAB Production Server to Python

3-3

MATLAB Arrays as Python Variables

In this section...
“Create MATLAB Arrays in Python” on page 3-4
“MATLAB Array Attributes and Methods in Python” on page 3-5
“Multidimensional MATLAB Arrays in Python” on page 3-6
“Index Into MATLAB Arrays in Python” on page 3-6
“Slice MATLAB Arrays in Python” on page 3-6
“Reshaping MATLAB Arrays in Python” on page 3-7

The matlab Python package provides array classes to represent arrays of MATLAB numeric types as
Python variables. Other MATLAB types are also supported, as listed in “Pass Data to MATLAB from
Python” (MATLAB). For information on installing the matlab Python package, see “Install a MATLAB
Compiler SDK Python Package” (MATLAB Compiler SDK).

Create MATLAB Arrays in Python
You can create MATLAB numeric arrays in a Python session by calling constructors from the matlab
Python package (for example, matlab.double, matlab.int32). The name of the constructor
indicates the MATLAB numeric type. You can pass MATLAB arrays as input arguments to MATLAB
functions called from Python. When a MATLAB function returns a numeric array as an output
argument, the array is returned to Python.

You can initialize the array with an optional initializer input argument that contains numbers.
The initializer argument must be a Python sequence type such as a list or a tuple. The optional
size input argument sets the size of the initialized array. To create multidimensional arrays, specify
initializer to contain multiple sequences of numbers, or specify size to be multidimensional. You
can create a MATLAB array of complex numbers by setting the optional is_complex keyword
argument to True. The mlarray module provides the MATLAB array constructors listed in the table.

Class from matlab Package Constructor Call in Python MATLAB Numeric Type
matlab.double matlab.double(

initializer=None,
size=None,
is_complex=False)

Double precision

matlab.single matlab.single(
initializer=None,
size=None,
is_complex=False)

Single precision

matlab.int8 matlab.int8(
initializer=None,
size=None,
is_complex=False)

8-bit signed integer

matlab.int16 matlab.int16(
initializer=None,
size=None,
is_complex=False)

16-bit signed integer

3 Data Handling

3-4

Class from matlab Package Constructor Call in Python MATLAB Numeric Type
matlab.int32 matlab.int32(

initializer=None,
size=None,
is_complex=False)

32-bit signed integer

matlab.int64a matlab.int64(
initializer=None,
size=None,
is_complex=False)

64-bit signed integer

matlab.uint8 matlab.uint8(
initializer=None,
size=None,
is_complex=False)

8-bit unsigned integer

matlab.uint16 matlab.uint16(
initializer=None,
size=None,
is_complex=False)

16-bit unsigned integer

matlab.uint32 matlab.uint32(
initializer=None,
size=None,
is_complex=False)

32-bit unsigned integer

matlab.uint64b matlab.uint64(
initializer=None,
size=None,
is_complex=False)

64-bit unsigned integer

matlab.logical matlab.logical(
initializer=None,
size=None)c

Logical

a. In Python on Windows, matlab.int64 is converted to int32 in MATLAB. Also, MATLAB cannot return an int64 array
to Python.

b. In Python on Windows, matlab.uint64 is converted to uint32 in MATLAB. Also, MATLAB cannot return a uint64
array to Python.

c. Logicals cannot be made into an array of complex numbers.

When you create an array with N elements, the size is 1-by-N because it is a MATLAB array.

import matlab
A = matlab.int8([1,2,3,4,5])
print(A.size)

(1, 5)

The initializer is a Python list containing five numbers. The MATLAB array size is 1-by-5, indicated by
the tuple (1,5).

MATLAB Array Attributes and Methods in Python
All MATLAB arrays created with matlab package constructors have the attributes and methods listed
in the following table:

Attribute or Method Purpose
size Size of array returned as a tuple

 MATLAB Arrays as Python Variables

3-5

Attribute or Method Purpose
reshape(size) Reshape the array as specified by the sequence

size

Multidimensional MATLAB Arrays in Python
In Python, you can create multidimensional MATLAB arrays of any numeric type. Use two Python lists
of floats to create a 2-by-5 MATLAB array of doubles.

import matlab
A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])
print(A)

[[1.0,2.0,3.0,4.0,5.0],[6.0,7.0,8.0,9.0,10.0]]

The size attribute of A shows it is a 2-by-5 array.

print(A.size)

(2, 5)

Index Into MATLAB Arrays in Python
You can index into MATLAB arrays just as you can index into Python lists and tuples.

import matlab
A = matlab.int8([1,2,3,4,5])
print(A[0])

[1,2,3,4,5]

The size of the MATLAB array is (1,5); therefore, A[0] is [1,2,3,4,5]. Index into the array to get
3.

print(A[0][2])

3

Python indexing is zero-based. When you access elements of MATLAB arrays in a Python session, use
zero-based indexing.

This example shows how to index into a multidimensional MATLAB array.

A = matlab.double([[1,2,3,4,5], [6,7,8,9,10]])
print(A[1][2])

8.0

Slice MATLAB Arrays in Python
You can slice MATLAB arrays just as you can slice Python lists and tuples.

import matlab
A = matlab.int8([1,2,3,4,5])
print(A[0][1:4])

3 Data Handling

3-6

[2,3,4]

You can assign data to a slice. This example shows an assignment from a Python list to the array.

A = matlab.double([[1,2,3,4],[5,6,7,8]])
A[0] = [10,20,30,40]
print(A)

[[10.0,20.0,30.0,40.0],[5.0,6.0,7.0,8.0]]

You can assign data from another MATLAB array, or from any Python iterable that contains numbers.

You can specify slices for assignment, as shown in this example.

A = matlab.int8([1,2,3,4,5,6,7,8])
A[0][2:4] = [30,40]
A[0][6:8] = [70,80]
print(A)

[[1,2,30,40,5,6,70,80]]

Note Slicing MATLAB arrays behaves differently from slicing a Python list. Slicing a MATLAB array
returns a view instead of a shallow copy.

Given a MATLAB array and a Python list with the same values, assigning a slice results in different
results.

>>>mlarray = matlab.int32([[1,2],[3,4],[5,6]])
>>>py_list = [[1,2],[3,4],[5,6]]
>>>mlarray[0] = mlarray[0][::-1]
>>>py_list[0] = py_list[0][::-1]
>>>mlarray[0]
matlab.int32([[2,2],[3,4],[5,6]])
>>>py_list
[[2,1],[3,4],[5,6]]

Reshaping MATLAB Arrays in Python
You can reshape a MATLAB array in Python with the reshape method. The input argument, size,
must be a sequence that does not change the number of elements in the array. Use reshape to
change a 1-by-9 MATLAB array to 3-by-3.

import matlab
A = matlab.int8([1,2,3,4,5,6,7,8,9])
A.reshape((3,3))
print(A)

[[1,4,7],[2,5,8],[3,6,9]]

 MATLAB Arrays as Python Variables

3-7

See Also

Related Examples
• “Use MATLAB Arrays in Python” on page 3-9
• “Pass Data to MATLAB from Python” (MATLAB)

3 Data Handling

3-8

Use MATLAB Arrays in Python
This example shows how to use MATLAB arrays in Python.

The matlab package provides new Python data types to create arrays that can be passed to MATLAB
functions. The matlab package can create arrays of any MATLAB numeric or logical type from
Python sequence types. Multidimensional MATLAB arrays are supported.

Create a MATLAB array in Python, and call a MATLAB function on it.

import matlab
from production_server import client
client_obj = client.MWHttpClient("http://localhost:9910")
x = matlab.double([1,4,9,16,25])
print(client_obj.myArchive.sqrt(x))

[[1.0,2.0,3.0,4.0,5.0]]

You can use matlab.double to create an array of doubles given a Python list that contains numbers.
You can call a MATLAB function such as sqrt on x, and the return value is another matlab.double
array.

Create a multidimensional array. The magic function returns a 2-D array to Python scope.

a = client_obj.myArchive.magic(6)
print(a)

[[35.0,1.0,6.0,26.0,19.0,24.0],[3.0,32.0,7.0,21.0,23.0,25.0],
 [31.0,9.0,2.0,22.0,27.0,20.0],[8.0,28.0,33.0,17.0,10.0,15.0],
 [30.0,5.0,34.0,12.0,14.0,16.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

Call the tril function to get the lower triangular portion of a.

b = client_obj.myArchive.tril(a)
print(b)

[[35.0,0.0,0.0,0.0,0.0,0.0],[3.0,32.0,0.0,0.0,0.0,0.0],
 [31.0,9.0,2.0,0.0,0.0,0.0],[8.0,28.0,33.0,17.0,0.0,0.0],
 [30.0,5.0,34.0,12.0,14.0,0.0],[4.0,36.0,29.0,13.0,18.0,11.0]]

See Also

More About
• “MATLAB Arrays as Python Variables” on page 3-4

 Use MATLAB Arrays in Python

3-9

APIs

4

matlab.production_server.client.MWHttpClient
Package: matlab.production_server

Python object encapsulating a connection to a MATLAB Production Server instance

Description
The matlab.production_server.client.MWHttpClient class creates a connection object that
encapsulates the connection between the client and a MATLAB Production Server instance. Once the
connection is created, you can dynamically call all MATLAB functions hosted on the server instance.

Construction
my_client = MWHttpClient(url,[timeout_ms=timeout_ms])

Input Arguments

url — URL of the server instance to connect to
string

URL of the server instance to which the client connects, specified as a string. This server instance
hosts the MATLAB functions which the client can evaluate.

timeout_ms — number of milliseconds the client waits for a response from the server
instance
120000 (default)

Number of milliseconds the client waits for a response from the server instance, specified as an
integer.

Methods

Exceptions
HTTPException Raised if there is a problem communicating with

the server instance.
MATLABException Raised if a function call fails to execute.
TypeError Raised if the specified timeout value is not a

positive int or long.
ValueError Raised if the specified timeout value is less than

zero.

See Also
Topics
“Create a Default Connection” on page 2-3
“Configure the Connection Time Out” on page 2-3

4 APIs

4-2

“Invoke MATLAB Functions that Return a Single Output” on page 2-5
“Invoke MATLAB Functions that Return Multiple Outputs” on page 2-6

 matlab.production_server.client.MWHttpClient

4-3

	Client Programming
	Create a MATLAB Production Server Python Client
	Create a Python Client

	Python Client Development
	Install the MATLAB Production Server Python Client
	Supported Python Interpreters
	Installation Procedure

	Create Client Connection
	Create a Default Connection
	Configure the Connection Time Out

	Invoke MATLAB Functions that Return Zero Outputs
	Invoke MATLAB Functions that Return a Single Output
	Invoke MATLAB Functions that Return Multiple Outputs
	Receive the Results as Individual Variables
	Receive the Results as a Single Object

	Handle Function Processing Errors
	HTTP Errors
	MATLAB Runtime Errors

	Data Handling
	Pass Data to MATLAB Production Server from Python
	Handle Data Returned from MATLAB Production Server to Python
	MATLAB Arrays as Python Variables
	Create MATLAB Arrays in Python
	MATLAB Array Attributes and Methods in Python
	Multidimensional MATLAB Arrays in Python
	Index Into MATLAB Arrays in Python
	Slice MATLAB Arrays in Python
	Reshaping MATLAB Arrays in Python

	Use MATLAB Arrays in Python

	APIs
	matlab.production_server.client.MWHttpClient

